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Fig. 1. A kit of parts allows cost-effective fabrication of bending-active assemblies. Our general optimization method finds the part geometries to best
reproduce a given set of input designs and can be specialized to different material systems. Left: Umbrella meshes deploy from a compact assembly state
towards a target equilibrium. Right: Bending-active orthogonal gridshells assembled from straight beams that deform to best approximate the target surface.

Bending-active structures are composed of elastic elements that deform to
achieve a desired target shape. To support effective design, inverse algorithms
have been proposed that optimize the geometry of each element specifically
for each design. This makes it difficult to reuse elements across designs or
gain efficiency in fabrication through mass production.

We address this issue and propose a computational framework to ra-
tionalize bending-active structures into a sparse kit of parts. Our method
solves for the optimal part geometry such that multiple input designs can
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be faithfully realized with the same kit of parts. Assigning parts to differ-
ent assemblies leads to a combinatorial explosion that makes exhaustive
search intractable. Instead, we propose a relaxed continuous optimization
incorporating a physics-based simulation in its inner loop to model the elas-
tic deformation of the bending-active structure accurately. Our algorithm
allows analyzing different design trade-offs of a kit of parts to tune the
balance between fabrication complexity and fidelity to the original designs.
We demonstrate our method on three different classes of bending-active
structures, showcasing the effectiveness of our approach for part reuse and
sustainable practices in fabrication-driven design.
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1 INTRODUCTION

Bending-active structures are physical systems characterized by dis-
tinctive curved geometries, which arise from the elastic deformation
of initially straight or planar elements. This formation approach
not only enables the creation of static structures but also facilitates
the construction of kinetic and deployable systems by leveraging
the reversibility of elastic deformations [Lienhard 2014]. While the
constituent elements must be thin and slender to allow significant
deformation, the structures must counterbalance this material reduc-
tion to withstand loads by employing alternative stress-stiffening
effects achieved through appropriate geometric design [La Magna
2017].

The equilibrium form of these structures emerges when all in-
ternal forces induced by elastic deformation of the elements and
external forces, such as gravity, are in global balance. The presence
of large deformations, along with the sensitivity of the structural
form to even minor changes in the geometry and material properties
of its constituents, makes the design process highly challenging. In
response to this, physics-based simulations have been integrated
into the research of bending-active structures to accurately predict
equilibrium states [Lienhard et al. 2013; Manolas et al. 2022]. To
match a simulated form with a desired input freeform geometry,
inverse design algorithms have been proposed that directly solve
for the design parameters of the bending-active structure [Becker
et al. 2023; Panetta et al. 2019; Pillwein and Musialski 2021; Ren et al.
2022). These parameters typically define the undeformed rest state
of the constituent elements, which can be fabricated in a flat state
and then assembled into the final structure.

One key advantage of bending-active structures is that their con-
stituent elements are designed to maintain strain within the elastic
limits of the material, allowing for reversible elastic deformation.
This means that a structure can be undeployed and individual com-
ponents could in principle be re-used in a different design. However,
current inverse design methods compute optimized component ge-
ometries that are specific to one particular design only. This limits
the re-use potential of parts and requires custom fabrication of each
individual element, which can be slow and expensive compared to
mass production techniques. Our work addresses these drawbacks
and investigates the question of how to design a kit of parts that
can be manufactured at scale and be re-used across multiple designs
of bending-active structures.

This problem has been extensively studied for static structures
composed of rigid components, in particular in the context of ar-
chitectural research [Alegria Mira et al. 2016; Briitting et al. 2021].
Freeform designs are rendered feasible for fabrication by rational-
izing them to groups of identical components. Such an optimized
kit of parts can be used to assemble complex structures with an
efficient fabrication pipeline, providing a cheaper and more sus-
tainable alternative to custom fabrication. We study this problem
for bending-active structures, where parts can deform into many
different configurations in different assemblies. This additional com-
plexity requires a fundamentally different approach.

Contributions. Our main contribution is a computational framework
for optimizing a kit of parts for bending-active structures. We pro-
pose a numerical method that relaxes the discrete combinatorial

ACM Trans. Graph., Vol. 43, No. 6, Article 230. Publication date: December 2024.

C-meshes

C-shells

Umbrella Meshes

Fig. 2. Examples of bending-active structures using elastic beams: Umbrella
Meshes [Ren et al. 2022], C-shells [Becker et al. 2023], and orthogonal grids
(a superset of C-meshes [Liu et al. 2023b]) that can be actuated into a 3D
target surface.

nature of the part-to-element assignment problem into a continuous
optimization problem. This fully differentiable optimization can be
seamlessly combined with a physics-based simulation that tracks
the equilibrium states of all input design instances mapped onto the
kit of parts. Our formulation is general in that it can be applied to
different classes of bending-active structures. We show how to cus-
tomize the algorithm for three concrete examples of bending-active
structures, highlighting the versatility of our approach. The full
source code and experiments can be found at https://go.epfl.ch/kop.

2 RELATED WORK

We discuss prior work on bending-active and deployable struc-
tures in the context of component reuse and rationalization. Works
proposing component reuse in architecture are followed by a review
of reconfigurable systems with reusable components as their build-
ing blocks. We mention computational methods for rationalization
in the context of computer graphics and further narrow our focus
on modular systems involving a kit-of-parts approach to conclude
the section.

Deployable Structures. Deployable structures transform from a
compact rest state that is typically easy to assemble, transport, and
store to a deployed target state. While deployment mechanisms span
across different scales and material systems [Yang et al. 2023], we
focus on structures composed of elastic beams coupled via specific
joining mechanisms. Trusses, space frames, and gridshells [Dyvik
et al. 2021] are notable examples of such structures on an archi-
tectural scale. Several works deal with finding deployable variants
of gridshells [Becker et al. 2024; Panetta et al. 2019; Pillwein and
Musialski 2021; Schling et al. 2022; Tellier 2022] and the actuation
sequence for their erection. The inverse-design problem of com-
puting the rest state that deploys to a desired deployed state is of
particular interest. Approaches involving geometric abstractions
and numerical optimization have been proposed to solve the prob-
lem for different deployable structures [Baek et al. 2018; Becker et al.
2023; Liu et al. 2023b; Ren et al. 2022].

Figure 2 shows examples of bending-active deployable structures.
While digital fabrication techniques have enabled the creation of
bespoke solutions tailored to specific deployment states, our focus


https://go.epfl.ch/kop

shifts to optimizing kit of parts that can be reused across multiple
designs and deployments. This shift to generalized kits introduces
significant challenges. Specifically, the inherent difficulty of rational-
izing a material system is further intensified by the large deforma-
tions characteristic of bending-active structures. In these cases, the
complexity is twofold: ensuring that the structure’s deployability
is preserved throughout the rationalization process, and accurately
maintaining and tracking the equilibrium states of the system.

Orthogonal Gridshells. Orthogonal gridshells define another sub-
class of bending-active structures that is of particular interest. Here,
the beam profiles are oriented normal to the design surface, al-
lowing beams to deform along their weak axis to approximate the
surface geometry, while load transfer occurs locally via their strong
axis [Schling 2018]. Networks of asymptotic curves to create as-
ymptotic gridshells [Schling and Barthel 2020; Schling et al. 2022]
and pseudo-geodesic gridshells [Mesnil et al. 2023] are examples of
such structures using straight strips. Circular strips have also been
used on surfaces of constant mean curvature [Schling et al. 2018],
or for deployable orthogonal structures (along with straight ones)
through the concept of C-meshes [Liu et al. 2023b]. We consider a
generalization of these structures with curved planar lamellas.

Re-usable Structures. Our focus on a kit-of-parts approach ad-
dresses the challenge of promoting the reusability of structural
components. Reuse-driven design [Fivet and Briitting 2020; Huang
et al. 2021] is crucial for promoting component reuse both upstream
(by procuring components for future use) and downstream (by de-
signing with future reuse in mind). An interesting approach of
re-usability are modular structures made of identical universal com-
ponents that can be reconfigured for various design realizations.
Alegria and co-workers [2016] introduce a universal scissor com-
ponent that can be reconfigured to all basic scissor cells. Liu et al.
[2022] use reconfigurable units with three multi-stable states (long,
short, and bent) to design 3D space metawires for reconfigurable an-
tennas. Kusupati and colleagues [2023] use identical, shape-agnostic,
and reconfigurable umbrella cells to realize structures that deploy
into a large range of desired geometries. Although universal re-
configurable components can be manufactured at scale and reused
across various designs, they often involve significant complexity in
terms of part geometry and fabrication. In contrast, our work adopts
the principle that a simpler, less reconfigurable kit of parts can be
mass-produced more cost-effectively, striking a balance between
part reuse and fabrication complexity.

Computational Rationalization. An important aspect of our work
involves the rationalization of target geometries into a finite set of
parts. Research in computer graphics and computational geome-
try is relevant for the panelization of free-form surfaces [Liu et al.
2021; Singh and Schaefer 2010; Zhu et al. 2023] with applications
in architecture [Eigensatz et al. 2010; Zimmer et al. 2012]. Fu and
colleagues [2010] generate a set of K quads whose instances can
produce a tiled quad surface that approximates the input surface.
Freeform honeycomb structures [Jiang et al. 2014] provide a torsion-
free support structure with identical nodes. Jiang et al. [2021] use
panels that are manufacturable by precise isometric bending of
surfaces made from a few molds of constant Gaussian curvature.
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Various works such as [Luo et al. 2015; Testuz et al. 2013; Zhang
and Balkcom 2016] also explore volumetric rationalization of 3D
shapes using shape filling blocks.

Other works focus on clustering the set of parts based on dif-
ferent metrics. Basso and colleagues [2009] perform an optimiza-
tion on free-form gridshells to cluster elements into a predefined
number of different length groups. Liu et al. [2023a] present a clus-
tering—optimization framework to reduce the number of different
nodes in space frame structures. Zimmer and co-workers [2014] ra-
tionalize free-form shapes to a single kit of parts using the Zometool
set composed of linear elements of nine different lengths connected
by one universal joint with different connection directions. Lu and
Xie [2023] reduce the number of different members in a truss layout
by considering shared lengths between members as well as shared
cross-sections. Schling and Barthel [2020] provide a holistic theory
of repetitive structures considering both the geometric and construc-
tive parameters through computational design. Their systematic
study aims to identify principle relationships of form and structure
and develop new design strategies.

Kit-of-Parts Approach. Tt is not a new idea to use a kit of parts
pre-designed and engineered to be mass-produced for construction.
Howe et al. [1999] draw parallels to an object-oriented programming
environment with well-defined interfaces to be followed (e.g. load
transfer rules, cost constraints, boundary constraints). Briitting and
colleagues [2021] present a new computational workflow to design
a bespoke kit of parts that can be employed to build structures of
diverse typologies using optimization of structural members and
joints i.e., the kit of parts that fit multiple geometric and structural
requirements. St-Hilaire and Nejur [2022] propose form-matching
of a temporary architectural structure with a kit of parts coupling
wood with simple bendable steel strips. Gaudreault and Nejur [2023]
introduce a constructive system aimed at maximizing the integration
of reclaimed materials for the construction of triangular reticular
structures. While these works take a kit-of-parts design approach,
they do not handle free-form bending-active structures. We provide
a general framework for rationalizing bending-active structures
employing physics-based simulation for form-finding in the inner
loop of the optimization.

3 OVERVIEW

Bending-active structures based on elastically deforming beams
share many commonalities, even when their deployment mecha-
nism are fundamentally different. This observation motivates our
formulation of a general kit-of-parts optimization approach that
can be customized towards of specific classes of bending-active
structures.

Our algorithm takes as input a set of existing design instances,
given by the individual geometries of all elastic elements in their
rest state, and corresponding assembly graphs that define the con-
nectivity of elements in each final structure. The goal is then to
optimize for a sparse kit of parts, that is, to find the optimal geome-
try of each part as well as an assignment function that determines
which element in each input design will be realized by which part.
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Fig. 3. Rationalization of a bending-active structure using a kit of parts: The graph G defines the assembly connectivity of the design with nodes representing
constituent elements/beams. Projecting these designs onto a kit of parts replaces each element j with parameters q; by a part ¢(j) from the part set with
parameters p.( ). Here c represents the assignment function from elements to parts. The part set and the subsequent kit of parts are computed through an
optimization that minimizes an objective comprising target fitting 7~ and elastic energy & of the equilibrium state.

Such a kit of parts will be effective, if the number of parts is signifi-
cantly smaller than the number of elements, while at the same time
enabling faithful reproduction of the input designs.

We first define a template optimization problem in Section 4. Our
formulation abstracts from class-specific implementation details
and focuses on the core objectives that are common across different
classes of bending-active structures. Specifically, we show in Sec-
tion 5 how the combinatorial problem of assigning parts to elements
can be solved with a continuous relaxation that allows integrating
a physics-based simulation to track equilibrium states of the given
input designs. We then illustrate in Section 6 how this template
optimization can be overloaded with specific objectives for three
concrete bending-active structures: (i) umbrella meshes, (ii) orthogo-
nal grids, and (iii) C-shells. Implementation aspects of the numerical
optimization are discussed in Section 7 with more details provided
in the supplemental material.

We show in Section 8 how our algorithm enables users to analyze
different design choices for the optimization of a kit of parts. This
helps to find the most appropriate trade-off between the complexity
of the kit of parts and the deviation to the input designs.

4 PROBLEM STATEMENT

In this section we introduce terminology and formulate the general
problem of optimizing a kit of parts for bending-active structures.

We assume as input a set S1, Sy, . . . of bending-active structures
that represent the variability in designs that should be realizable by
the kit of parts. Each structure Sy is represented by a graph G whose
nodes denote the elastic elements of the structure that are joined
according to the connectivity defined by the graph edges. Each node
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has attributes q; € R, a set of continuous parameters that define
the element geometry. For example, q; could denote the length
and width of a straight beam and the location of rotational joints
along the beam. For ease of notation, we accumulate all element
parameters in a vector q = (q, . . ., qn) Where n is the total number
of elements across all input designs.

4.1

To simulate the equilibrium of a structure Si, we convert the corre-
sponding element parameters into a discrete representation suitable
for simulation. In our case, we model elastic beams using the dis-
crete elastic rod model introduced by Bergou and colleagues [2010;
2008]. Each beam is sampled with a polyline. The rest variables
of the structure are then the lengths and angles of these polylines
that we collect in a vector r. The simulation variables representing
a deformed state of the design, i.e., the nodal positions and local
frames of all discrete elastic rods, are collected in a vector x. The
elastic energy of the deformation is defined as &(x, r) and combines
stretching, bending, and twisting terms as proposed in [Bergou et al.
2010].

The deformed state of Sy at equilibrium is the solution x* of
a constrained minimization problem. The optimization objective
combines the elastic deformation energy &(x,r) with external de-
ployment forces modeled by an energy term D(x). We also inte-
grate Dirichlet constraints to fix a certain subset of the deformed

Equilibrium Computation

state variables X C x to user-specified target values x& allowing
pinning vertices to fixed positions or simulating deployment. We
aggregate the rest variables with the fixed variables in a vector of
design variables d. The equilibrium state x* is defined as a function



v |

Elements Parts p Equilibria x* | — Preservation
a Assignments c quriibria x Energy F

Fig. 4. Optimization flow for the original kit of parts problem. The objective
is to find the optimal part parameters p and assignments c that minimize
the design preservation energy ¥ across all designs.

of design variables d as

x*(d) :=argmin E(x, 1) + D(x) (1)
s.t. Xf = x}gt.

4.2 Kit of Parts Objective

AKit of parts is an ensemble of m parts p := (p1, ..., pm), Wherep; €
R? define the parts’ geometry analogous, but potentially different
to the parameterization used for elements of the input designs.

To realize the structures S with the kit of parts p, we define
an assignment function ¢ : [1,n] — [1,m] that indicates which
part of p is assigned to which element in q. These assignments
are aggregated over all structures in a vector ¢ = (c(1),...,c(n)).
The assignment process is described in more detail in Section 5.2.
Figure 3 illustrates q, p, and c for a simple bending-active system.
See also Figure 6 and Section 6 for the specific classes we consider
below.

The optimization aims to compute the part parameters of p with
m < n and the corresponding assignment c such that element q;;
can be rationalized as an instance of part p.(;). This projection
onto the kit of parts inevitably incurs a deviation in the resulting
equilibrium shapes from the input designs. Our goal is to reduce
this discrepancy to a minimum while retaining a low elastic energy
of the system. We thus formulate a design preservation energy as a
function of (x,r) as,

Fxr)=T x)+&E(x,r1), (2)

where 7 is a target fitting term measuring the distance of the de-
formed state x to a given target surface, and & is the elastic energy
of x. In the supplemental material we describe how to apply suitable
weight factors for these terms to make # scale-invariant. We discuss
how ¥ can be adapted to different systems in Section 6.

Once a design Sy, is rationalized using the kit of parts p, its rest
variables rj and design variables dj are a function of the part pa-
rameters p and the assignment c. As a consequence, the equilibrium
state XZ(dk) is a function of (p, c¢) as well. We therefore formulate
the objective function for the kit of parts optimization as the sum
of the design preservation energies across all designs:

T(@.e) = 3 F (xi(p.0).re(p.c) ®
k

Figure 4 illustrates the optimization problem. Optionally, weights
can be assigned to indicate the relative importance of each design
and re-formulate the objective as a weighted sum of design preser-
vation energies.
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Fig. 5. Optimization flow for the relaxed problem. The relaxation enables
a fully differentiable optimization that can be seamlessly combined with
a physics-based simulation. The elements q and parts p are illustrated in
Figure 6. Figure 7 visualizes the part assignments ¢ and equilibria x* along
with the energies ¥ and P.

5 KIT OF PARTS OPTIMIZATION

The equilibrium state x* in Equation (3) is sensitive to changes in the
kit-of-parts variables (p, c). A change in the assignment function can
lead to a large jump in the equilibrium state x* and subsequently the
design preservation energy 7. In addition, the space of assignments
¢ grows exponentially with n, making an exhaustive search over
the m" possibilities intractable. The projection of elements q onto
parts p in the context of bending-active structures is challenging
and can result in buckled equilibrium states. We discuss more about
buckling issues in Section 8 and illustrate in Figure 11 how our
approach mitigates them.

5.1 Projection-Relaxed Problem

We address the forementioned challenges by formulating a relax-
ation of the problem of minimizing Equation (3) to a tractable contin-
uous optimization. This relaxation is achieved by tracking auxiliary
continuous variables q of the elements in the simulation.

We define the kit-of-parts parameters (p, ¢) as dependent vari-
ables of q and introduce a projection energy ¥ to bind the auxiliary
variables q to the parts and assignment variables (p, ¢). The rest vari-
ables 1y and the equilibrium state x; (r¢) of design Sy are defined as
functions of q. The new objective is then written as a function of q:

T@ = Y\ F (xp@.1%(@) + P(@. @
k

As opposed to the former objective of Equation 3, part parameters p
and part assignments c are dependent variables of q and are up-
dated in the optimization loop. The relaxed formulation defines the
equilibrium simulation as a function of the continuous variables q
and makes J robust to large jumps due to changes in the assign-
ment function. The optimization flow is illustrated in Figure 5. The
various terms in 7 (q) specific to our bending-active systems are
defined in Section 6 and illustrated in Figure 7 on a single design
instance for each system.

5.2 Projection Energy

To define P, we first introduce a non-dimensionalized part-element
projection energy p : R x RY — R,. A low value of p(p;, q;)
indicates higher similarity between an element j and a part i. For
independent parts p, assignment ¢, and elements q, the projection

ACM Trans. Graph., Vol. 43, No. 6, Article 230. Publication date: December 2024.
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Fig. 6. Elements, parts, and assembly states of the three classes of bend-
ing active structures we consider. From top to bottom: Umbrella Meshes,
orthogonal grids, C-shells. The plots on the right illustrate the distribution
of parameters in the input models compared to an optimized kit of parts,
where element symmetries can be exploited to further reduce the number
of parts.

energy P(p, ¢, §) is aggregated over all elements as,
We v
~ ~ C ~
.6 Q) = — i)>4j)s 5
P(p.c.q) " j;p(pc(]) q;) (5

where the weight w, controls the relative importance given to the
projection energy term during optimization. Minimizing P ensures
that the elements are well represented by the parts they have been
assigned.

The projection energy #(q) from Equation (4) is then obtained
as a minimum over all possible parts and assignments for a given
set of elements q,

P (@ = minP(p, ¢, 9. ®)
We minimize # in an alternating fashion over assignment and part
updates.

Updates. The assignment c, or the function c, is updated by keeping
p fixed and solving for the optimal assignment,

¢(j) := argmin p(p;, G)- ™

The parts p are then updated by keeping c fixed and solving for the
optimal parts,

pi(@ =argmin )" p(y,d)), ®
yeRY jecTi({i})
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where ¢~ ({i}) is the set of elements currently assigned to part i.
In all of our examples, the update step in Equation (8) can be solved
analytically and efficiently differentiated through. The alternating
updates are repeated until convergence for every evaluation of P (q).
Note that when p is the squared L? distance, the update rules are
equivalent to the k-means clustering algorithm [MacQueen et al.
1967].

Initialization. The alternating update scheme to compute $(q) re-
quires an initial guess for (p, ¢). Our initialization is inspired by the
k-means++ algorithm [Arthur et al. 2007], so that parts are as spread
out over the set of elements as possible. A first element is chosen
uniformly at random and assigned to the first part p;. A new element
q; is chosen at random among the remaining elements according to
a probability proportional to the squared distance min; p(p;, (1,-)2,
where i spans the initialized parts and j indexes the remaining unas-
signed elements. The chosen element j is then assigned to part i
and i is added to the set of initialized parts. This process is repeated
until m parts have been constructed. We observe in Figure 7 (left)
that such a process allows the parts to span the element space well.

6 SPECIALIZATION TO BENDING-ACTIVE SYSTEMS

We specialize our general computational pipeline to optimize a kit of
parts for the chosen bending-active systems: Umbrella Meshes [Ren
et al. 2022], Orthogonal Grids, and C-shells [Becker et al. 2023].
Physics-based simulations of the involved bending-active structures
are based on the methods presented in the respective papers which
have been validated by fabricating prototypes.

We formulate the objective from Equation (3) specific to these
three systems. In particular, we define the elements and parts pa-
rameterizations, the deployment process, and the element-to-part
projection energy. The datasets of shapes for all systems are shown
in the supplemental material.

6.1 Umbrella Meshes

Umbrella Meshes are composed of modular volumetric scissor link-
ages, coined umbrella cells. Each umbrella cell deploys from a com-
pact vertical configuration to a flat expanded state whose footprint
depends on the height of the cell. When umbrella cells of different
heights are assembled together and deployed, metric frustration due
to expansion incompatibilities causes the structure to deform into
a doubly-curved bending-active surface structure. The top corner
of Figure 6 illustrates the elements that make up an umbrella cell,
which can be rationalized into a kit of parts for subsequent assem-
bly and deployment. The plates, X-joints and T-joints are identical
across all the designs.

Preservation Energy. Each umbrella cell is defined in its rest state
by the lengths of the arms connected to the top plate (top heights)
and the lengths of the arms connected to the bottom plate (bottom
heights). [Ren et al. 2022] explain how different top and bottom
heights lead to programming mean curvature in the deployed state.
The rest variables r are defined as the aggregation of these lengths.
The design variables d may also include pinned vertices at the
boundary as for model 2 in Figure 11. The structure is deployed in a
similar strategy to the one described in [Ren et al. 2022]: top and
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Fig. 7. Optimization objectives in the relaxed problem: For a given input design, the objective function J is composed of the design preservation energy ¥
(= 7 + &) and the projection energy P. The plots on the left show distributions of element parameters q and the optimal part assignments (p, ¢) minimizing
the projection energy P. The dots and crosses represent q and p as defined in Figure 6. The subsequent columns illustrate each of the terms in J for the three

classes of bending-active structures.

bottom plates are brought together through a linear actuator and
rigid motions are pinned using small surface attraction forces when
there are no boundary constraints. These additional conservative
forces responsible for deployment are modeled by the energy term
D in Equation (1). The resulting deployed state x* is then used to
evaluate the objective J in Equation (4).

Projection Energy. Each umbrella unit/element, is parameterized by
the length of the arms of the top plate and the bottom plate, 1 € R2.
Naturally, we define parts as two lengths 1, € RZ. Parts can be
used as is or in a mirrored configuration, which is illustrated by the
mirror symmetry about the bisector of the first quadrant in Figure 6
(top right). The projection energy between elements and parts is
defined as the squared L? norm of the difference between the two
lengths in both part configurations,

pp.lg) = i min (||lp ~ 1l laip(ty) - lq”g)’ ©)

where flip(p;) flips the lengths of the part p;, and [, is chosen as
the median of the arm lengths across the input designs. In this case,
the update rule in Equation (8) can be solved analytically by sorting
the assigned elements’ lengths and taking the mean. Note that the

sorting indices need to be stored to ensure the correct assignment
of the parts to the elements.

6.2 Orthogonal Grids

Orthogonal grids are bending-active structures composed of elastic
lamellas attached at the crossings. The lamellas are oriented such
that their strong axis is orthogonal to the input design surface. C-
meshes [Liu et al. 2023b] shown in Figure 2 are a special case of
orthogonal grids that further imposes the structure to be collapsible
into a flat state. In general, orthogonal grids require curved elements
to best approximate the underlying target surface. We rationalize the
curved rods as piecewise straight beams rigidly connected at their
corners. Exactly one corner is allowed between two neighboring
joints along each rod, to spatially separate inner- and inter-rod
connections.

Preservation Energy. The design state d of an orthogonal grid com-
prises rod segment rest lengths together forming the rest variables
vector r, and corner angles. Inter-rod connections are simulated us-
ing rotational joints, effectively constraining the intersection point
of two rods while allowing rotation. Corners, or inner-rod connec-
tions, are simulated as rigid joints with the opening angle between
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Relaxed Projection
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Fig. 8. The parts p(q) and assignments c(q) directly extracted from the original design yields poor preservation of the target shape (left). By re-arranging and
collapsing elements around their assigned parts, our relaxed optimization process allows for a better preservation of the initial design (right).

two rod segments treated as a fixed variable. The corner angles form
the set of fixed simulation variables x £ (Dirichlet constraints) of
the equilibrium problem in Equation (1). We rule out rigid motions
of the structures during simulation using the same strategy as in
Umbrella Meshes.

Projection Energy. Each straight element is parameterized by the
distance from the first corner joint to the rotational joint and the
distance from the rotational joint to the second corner as shown
in Figure 6 (left). The order of the corners is given by following the
curves in the original design. Boundary elements are distinguished
from inner elements as they have only one corner joint, and are
defined by a single length.

We consequently define each part as two lengths 1, € R2. Similar
to parts in Umbrella Meshes, parts can be used as is or mirrored. The
projection energy is defined equivalently to the Umbrella Meshes
case, and the parts update rule is solved similarly using the sort
strategy. We use the median of the rod lengths across the input
designs as the reference length [, in Equation (9).

To ease the assembly process, corner angles are also grouped into
their own discrete set of parts. Our kit of parts is then composed of
two types of parts: straight beams (linear parts) and corner angles
(angular parts). The corner angles are parameterized by the angle
between the two straight beams they connect, as shown in Figure 9.
Parts are defined subsequently by a single angle 0, € [0, ], and
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Fig. 9. Angular elements 6, € [-7, ] are computed at the corners of
rationalized C-shells. The angular part is defined by a single angle 6, €
[0, ] and can be flipped. We represent the angular elements, the 2 parts
and their flipped configurations on the unit circle.

can be mirrored during assembly. Our projection energy is then
defined as the squared difference between the two unsigned angles
p(0p,0q) = % (GP - |9q|)2. Based on that definition, the update rule
in Equation (8) is the average of the assigned elements’ unsigned
angles.

6.3 C-shells

C-shells are deployable gridshells composed of curved elastic beams
connected through rotational joints [Becker et al. 2023]. The assem-
bly state is stress-free by definition and the structure is deployed
via torque actuation, by constraining the average opening angle
at the rotational joints. For a completely custom fabricated C-shell



tailored to deploy to a specific surface, the curved beams are laser
cut precisely following some optimized splines. Similar to Orthogo-
nal Grids, we rationalize each of the curved beams using piecewise
straight beams joined at rigid corners. Rotational and corner joints
now share the same axis in the rest state.

Preservation Energy. Each rationalized C-shell is defined by the
lengths of the straight beams, the corner angles, and the average
opening angle of the single-axis rotational joints in the deployed
state. These design variables are aggregated in d. Rigid connections
at the corners are simulated using Dirichlet constraints in Equa-
tion (1). Depending on the values of beam lengths and corner angles,
a rationalized C-shell no longer has a guaranteed zero-energy rest
equilibrium state when assembled. We therefore compute this state
X} by solving an equilibrium problem for the assembly configuration.
The deployed equilibrium state x; is obtained by further constrain-
ing the average opening angle at the rotational joints as described
in Becker et al. [2023]. In order to mitigate incompatibilities in the
rest state x; and ease assembly, we incorporate the energy of the
rest equilibrium state in the preservation energy as

F (x5, %3, 1) =T (xq) + & (xgq, 1) + E (%1, 1), (10)

and we update J to track both equilibria as
T@ =) F (%, @.%3,@.1@) +P@, ()
k

where k indexes the different designs in the input set.

Projection Energy. We define each linear part as two lengths 1, € R?,
and each corner angle as a single angle 6, € [0, 7]. The projection
energies between elements and parts of the same type, and the parts’
update rules are defined identically to the Orthogonal Grids case.

7 TWO-STAGE OPTIMIZATION

We first show a direct rationalization approach in Figure 8 that com-
putes parts p and assignments c¢ directly from the input elements q
by minimizing P (p, ¢, q). This approach does not take the design
preservation energy ¥ into account and can lead to undesired buck-
ling in the output designs. Then, we illustrate the performance of
the unrelaxed approach from Section 4 which optimizes the part
parameters p using the assignments from minimizing P(p.c. q) di-
rectly. We then compare our relaxed approach in Figure 11. We
propose a two-stage optimization approach that first optimizes the
relaxed problem and then fine-tunes the parts p while keeping the
assignments c fixed to minimize the total preservation energy ¥ .
We show the results of our approach in Figure 12.

7.1 First Stage: Relaxation

The original design rationalization problem described in Section 4 is
a combinatorial optimization problem, where the number of possible
part-to-element assignments grows as m". This makes the problem
intractable for large elements count n and a non-trivial kit of parts.

Instead, our relaxation allows leveraging tools from the continu-
ous optimization literature to efficiently solve

q = argmin J (@), st Pmin < G < Pmax (12)
q
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Fig. 10. Our two stage optimization fine-tunes designs after first optimizing
the relaxed problem. The arrow indicates the projection of the solution of
the first stage q* onto the part set to obtain p(q*), the initial guess for the
second stage. We plot the objective of each stage normalized with respect
to the initial value for that stage. The rows show the designs at the start,
between the two stages, and at the end of the full optimization process.

where q now contains all elements of different kinds (linear and an-
gular if applicable), and pyin and pmax are lower and upper bounds.
These are derived from the parts feasibility and fabricability con-
straints e.g., for the minimum distance between corners and joints
for linear parts. We assume that elements of the same kind share the
same constraints. In the supplemental material, we show that for all
the part-element projection energies p we use in our experiments,
the resulting parts obtained from the optimal elements p(q*) using
the update rule in Equation (8) are guaranteed to satisfy the original
feasibility constraints. This fact effectively positions our method as
a co-rationalization approach providing an end-to-end parametric
control over the output designs with respect to the part feasibility
constraints.

Figure 11 shows how our projection onto a kit of parts after our
first-stage relaxation preserves designs better compared to directly
solving the original unrelaxed problem. This forms the base for the
second stage of our optimization.

7.2 Second Stage: Fixed Assignment Fine-Tuning

The first stage optimization strives to concentrate all the auxiliary
elements tightly around the parts in order to mitigate the discon-
tinuous elements-to-parts conversion. However, the output goal is
still a part set, and thus the auxiliary variables need to be converted
to the assigned parts. To this end, we perform a second stage of
fine-tuning, where we fix the assignment ¢(q*) and optimize the
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Fig. 11. Solving for the original minimization problem over the parts p in Equation (3) using the original assignments c(q) produces undesired buckling. Our
relaxation allows smoothly bringing designs together towards a shared kit of parts. We show designs after the first stage optimization involving the relaxation

and project the elements on to the parts at the end of it. We report target fitting as a percentage of each model’s bounding box diagonal. The optimization
quantities are normalized using the respective initial values for each “projected” design.

part parameters starting from p(q*), as

p' = argmin J (p.<(@")), st Pmin < P < Pmax- (13)
q

Here ppin and pmax are the lower and upper bounds of the parts pa-
rameters, and the objective function J is defined as in Equation (3).
The second stage optimization has a very low number of variables
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compared to the first stage since the assignments are fixed and the
part set is sparse. The fine-tuning explores the part space locally
within a specific assignment for a local minimizer of the objective
function 7. Figure 10 shows the two stage optimization process
and visualizes objectives on an associated design instance. The tran-
sition between the two stages often leads to a jump in the elastic
energy which is mitigated during the second stage. Figure 12 shows



Input Design Direct Projection Two-Stage Projection

0% e—Q 9%

Dataset: Umbrella Meshes 1-6. 5 parts

Fig. 12. We show subsets of optimized designs from two different bending-
active systems after the two-stage optimization process. The left column
shows the input designs, the middle column shows the designs directly
projected to the part set. The right column shows the designs after the
two-stage optimization process. We report the target fitting as a percentage
of each model’s bounding box diagonal.

the final results of the two stage optimization process for C-shells
and Umbrella Meshes and compares them to the input designs as
well as a direct rationalization approach.

7.3 Optimization Algorithm

We solve the optimization problems in Equation (12) and Equa-
tion (13) using a trust-region active-set method (Sequential Linear-
Quadratic Programming) with a BFGS Hessian approximation [No-
cedal and Wright 2006] provided by Knitro [Waltz and Nocedal
2004]. We compute the gradient of the preservation energy ¥ using
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Fig. 13. A new design is projected onto an existing kit of parts. The input
design has not been used during the optimization of the kit of parts. Tuning
the clustering weight allows recovering a better design.

first order adjoint sensitivity analysis. More details on how differen-
tiation with respect to the constrained simulation variables x;gt(d)
is performed can be found in the supplemental material.

We use uniform material properties for all the structures in our
experiments with Young’s modulus E and Poisson’s ratio v set
to (1400MPa, 0.35) for Umbrella Meshes, and (2100MPa, 0.35) for
Orthogonal Grids and C-shells. Our first stage optimization typi-
cally converges in 10 minutes to an hour on the examples we show.
The second stage optimization runs faster, and typically takes no
more than 15 minutes to converge in our experiments.

8 DISCUSSION

Projection onto an Existing Kit of Parts. Given an existing kit of
parts p, our relaxation approach can project an input design onto
this kit to find the best assembly that approximates the new de-
sign. Given the fixed parts, the relaxed optimization problem from
Equation (4) models only the assignments ¢ as dependent variables
instead of both (p, ¢). The projection energy # in Equation (6) be-
comes mine P (p, ¢, q), for the choice of p. Figure 13 shows that a
higher projection energy weight w, enforces a tighter and quicker
fit of each element to their initial assignment, preventing them
from evolving during the projection operation. Lowering wc allows
smoothly transitioning from the input design to the kit of parts,
leading to better assignments in practice. However, if the weight
is too low, the elements are fit loosely to the parts, subsequently
leading to undesired buckling once assigned to the parts.
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Fig. 14. Increasing the number of distinct parts m trades design fidelity
for parts reuse. We jointly optimize 5 designs using the relaxation and
show the resulting equilibrium states (of 2 designs) after assigning parts to
elements. The kit of parts size is shown as a percentage of the total number
of fabricated pieces over the total number of elements in the input designs.

Part Reuse. Consider the scenario where we fabricate only as many
pieces (instances of parts) as needed such that all the designs can be
realized individually using this kit of parts. When we use a small part
set, the number of fabricated pieces is low, but the design fidelity
can suffer due to the limited expressiveness of the parts. On the
other hand, a large part set requires more pieces to be fabricated.
Our framework can be used to investigate the trade-off between
design fidelity and the size of the kit of parts. Figure 14 illustrates the
interplay between the kit-of-parts size and the maximum deviation
of the design instances from their target surfaces. In the visualized
examples of rationalized designs, we observe clear improvement in
the target fitting as the number of parts increase, however leading to
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Fig. 15. (a) Pairwise Jaccard similarities between two design instances for
two different part set sizes (2, 25). The inset shows the pieces used in two
designs (Design 2 and Design 5, with a part set size of 2) explaining the part
reuse % in the incidence matrix measuring pairwise part reuse. (b) General-
ized subset-wise part reuse. Note that the pairwise similarities correspond
to similarities on subsets of cardinality 2. (c) Evolution of average part reuse
across all subsets with the part set size.

an increase in the total number of fabricated pieces. Notice that the
gain in target fitting diminishes after a certain number of parts (12
in Figure 14), suggesting that the additional parts do not contribute
significantly to the design fidelity. Thus, our framework enables
discovery of the most suitable trade-off between design fidelity and
fabrication complexity.

With more parts, the likelihood of reusing pieces across different
designs decreases. Ideally, we would like to reuse the same pieces
across different designs to maximize part reuse. For the five design
instances considered in our experiments, we analyze part reuse
among different subsets of designs for each part set size. For exam-
ple, consider the sets of pieces S1, S2 used to assemble two designs
respectively. Then the Jaccard similarity |S1 N Sz|/|S1 U S2| mea-
sures the part reuse between the two designs. Figure 15a shows the
pairwise Jaccard similarities for the five design instances for two
different part set sizes (2, 25). This notion can be extended to more
than two designs by considering | (g Sk|/| Uk Sk|. Visualizing part
reuse among different subsets (Figure 15b) can provide insights into
disconnected design subsets. A similar analysis can be done over
the part subsets to discover disconnected part subsets in the kit of
parts. As the number of distinct parts increases, the average part
reuse diminishes, as shown in Figure 15c.



Fig. 16. Our framework can accommodate optimizing more complex part
typologies. Here we extend Orthogonal Grids’ and C-shells’ linear parts
to include slits at the ends and allow realizing several element lengths by
placing the corner at any point along the slit.

Buckling Issues During Projection. Figure 8 shows how a direct pro-
jection of elements to parts can lead to undesired buckling even for
a single design. Once such a bad assignment is made, optimizing
the part parameters does not recover the design fidelity as seen in
Figure 11. This is because the design objective is a highly non-linear,
non-convex function of the rest variables. If elements are projected
to parts when the clusters are not tight enough, the objective can
incur a large jump sometimes manifested as the observed buckling.
This problem is pronounced in the case of Umbrella Meshes which
have multiple stable configurations owing to a larger design space,
making recovery from buckled states hard.

Our relaxation provides a continuous balance between the ob-
jectives and brings the elements q closer to the parts p first while
maintaining the design fidelity. The auxiliary variables q are then
projected to the parts p at the start of the second stage optimiza-
tion as described in Section 7.2. Minimizing the relaxation objective
J (q) in the first stage brings the elements q tightly close to the
cluster center parts p controlled by w.. While this is a significantly
better state to project the elements to parts compared to the direct
approach, it is unclear how tight the clustering should be. Owing
to the highly nonlinear design objective, the equilibrium state can
show large deviations for small changes in the element size resulting
in failure cases like shown in Figure 18. In these scenarios, we in-
crease the projection energy weight w before projection to explore
better solutions without losing too much design fidelity. When that
fails, we understand that the tight cluster of elements cannot be
replaced by the cluster center part for this design, and re-initialize
the clusters with a larger kit of parts.

Part Complexity. In our work, we show a kit-of-parts approach that
first discretizes the input bending-active designs into atomic ele-
ments and then maps these elements to a part set that is parametrized
the same way as each of the elements. We demonstrate results for
three bending-active systems using this approach. However, our
framework is general and can be extended to include more com-
plex parts that are parametrized differently from the elements. For
example, we can include parts that allow continuous adjustments.
Figure 16 shows an example of such more complex parts. Each
straight beam has a slit window in which it can be connected to
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Fig. 17. Timings of our two-stage optimization, reported per each successful
line search step as measured on a Linux workstation with a 64-Core AMD
Ryzen Threadripper 3990X Processor and 128GB of RAM. The simulation
time consists of solving the equilibrium problem possibly multiple times
during the linesearch phase of the optimization. Gradient computation relies
on the simulation output and is done once per step. For this experiment,
the first stage took 1019 steps, and the second stage took 42 steps.

its neighboring elements. With the slits on both ends, the same
part could then be used to replace multiple different elements. How-
ever, a compromise on the slit length must be found to preserve
the structural integrity of the designs. Similarly, a reconfigurable
umbrella part [Kusupati et al. 2023] can be used to replace multiple
umbrella cells of different arm lengths that fall in the reconfigurable
range. Reconfigurable elements provide additional degrees of free-
dom to find better solutions for the constrained problem of finding
an optimal kit of parts. While complex reconfigurable parts have a
greater degree of expressiveness, they also increase the fabrication
complexity and can make assembly more difficult. For example, for
the slitted parts shown here, parts need to be connected carefully
to ensure the slit windows align correctly. In addition, the reconfig-
urable parts have additional components that can lead to collisions
during deployment, or undesired aesthetics. We leave the thorough
exploration of these reconfigurable part types for future work.

Computation Time. Figure 17 shows that most of the computation
time is allocated to finding equilibria, which happens during the
linesearch phase of the optimization. The gradient computation is
done once per step and is relatively fast.

The optimization steps taken in the unrelaxed problem are on
average more costly mainly due to a higher number of linesearch
steps. The reduction from 2217 element variables to 29 part variables
can explain that discrepancy. A perturbation in one of the part
variables may impact more than 75 elements on average at once, in
different ways depending upon their locations in their respective
structures. The objective in the second stage appears more sensitive
to each variable, making the optimization problem harder to solve.
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The relaxed problem, on the other hand, requires fewer linesearch
steps. The relaxation allows the elements to update independently
and tracks a better-behaved equilibrium state.

Architectural Applications. As discussed in the introduction, bending-
active structures are of particular interest in architecture. However,
few designs have been realized, partly because of high cost and
complexity of custom fabrication. The kit-of-parts approach that
we propose can potentially alleviate these issues. In Figure 19 we
show some speculative designs realized with our optimized kit of
parts to illustrate the potential for applications in architecture.

9 LIMITATIONS AND FUTURE WORK

Buckling Mitigation. While the relaxation approach performs well in
our experiments, we currently cannot quantify how close the solu-
tion of the relaxed version is to the optimal part set and assignment.
Depending on the energy landscape of the equilibrium that is being
tracked, a small perturbation in the element parameters can lead to
a significant change in the objective J. When the solution from the
relaxation problem is such an equilibrium state, we observe a jump
(buckling) between the two stages of the optimization, which leads
to potentially irrecoverable deployed state. Figure 18 exemplifies
this. Since our optimization relies on local sensitivity information
we cannot easily predict when such a jump will occur.

Focused Objectives. When optimizing the part geometries, we cur-
rently do not directly control re-use efficiency i.e., the number of
parts shared among different designs. If structures are to be assem-
bled in sequence, it would be desirable if the next design could re-use
as many parts from the previous design as possible to limit the total
number of elements that need to be fabricated. A corresponding
objective can be integrated into our optimization in future work.
While we currently use an elastic energy term in the design
preservation to favor low-energy designs, we can also include fo-
cused objectives like the maximum stress in the structure. Similarly,
precise load-bearing behavior can be enforced by including external
loads as part of the equilibrium simulation. Incorporating these
specific scenarios into our framework remains a future work.

Input Design Harmonization. Within each dataset, our input struc-
tures are designed such that initial elements belong to the same
region of the element parameters space. This manual harmonization
pre-processing step is necessary to ensure that the downstream
optimization converges to parts shared across most designs. Auto-
matically diagnosing the quality of the input designs and providing
feedback e.g., in the form of rescaling or topology changes, on how
to update the input designs best to make them more compatible
with each other can be a valuable addition. This can keep users
informed of the re-use efficiency during early design stages.

Fabrication. The simulation frameworks of the three bending-active
systems are based on the discrete elastic rod model [Bergou et al.
2008] which has been extensively validated [Romero et al. 2021].
Umbrella Meshes and C-shells fabricate physical prototypes to vali-
date the simulation results. Our rationalization choices to build these
systems with a kit-of-parts do not alter the fabrication process and
our simulation uses the same frameworks. However, it is necessary
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Fig. 18. A failure case of the relaxation approach in between the two stages
of the optimization. Slight perturbations in the assembly rest state may
result in irrecoverable buckling configurations.

to validate the rationalized designs with physical prototypes given
the sensitivity of the equilibrium states. We leave this for future
work since designing easily reconfigurable systems also comes with
significant engineering challenges.

10 CONCLUSION

An optimized kit of parts enables cost-effective and re-use-friendly
manufacturing of complex structures. The kit-of-parts approach
is particularly attractive for bending-active structures since each
part can appear in different configurations i.e., deformed states, of
different structures resulting in non-trivial coupling compared to
rigid kit-of-parts assemblies. Furthermore, these structures sharing
parts are highly sensitive to perturbations of the part geometries due
to active bending. Our computational pipeline enables evaluating
the trade-offs between the design preservation of input designs and
part set size, by leveraging physical simulation of the bending-active
equilibria to guide the optimization of the kit of parts.
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Fig. 19. Architectural applications: Speculative designs realized with an optimized kit of parts.
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